每個合數都可以寫成幾個質數相乘的形式,其中每個質數都是這個合數的因數,把一個合數用質因數相乘的形式表示出來,叫做分解質因數。如30=2×3×5 。分解質因數只針對合數。把一個合數分解成若干個質因數的乘積的形式,即求質因數的過程叫做分解質因數。分解質因數只針對合數。(分解質因數也稱分解素因數)求一個數分解質因數,要從最小的質數除起,一直除到結果為質數為止。分解質因數的算式叫短除法,和除法的性質相似,還可以用來求多個數的公因式。
質因數分解的定理是什么?
不存在最大質數的證明:(使用反證法)
假設存在最大的質數為N,則所有的質數序列為:N1,N2,N3……N
設M=(N1×N2×N3×N4×……N)+1,
可以證明M不能被任何質數整除,得出M也是一個質數。
而M>N,與假設矛盾,故可證明不存在最大的質數。
第二種因數分解的方法:
1975年,John M. Pollard提出。該算法時間復雜度為O